

398 East Dania Beach Blvd.
Suite 338
Dania Beach, FL 33004
954.399.8478 PH
954.744.4738 FX
contact@buildingdrops.com

Product Evaluation Report

of

Ventana USA

Series 2050 Garden Window

for

Texas Department of Insurance

Report No. 4847

Product: Series 2050 Garden Window

Material: Poly Vinyl Chloride

Product Dimensions: 63" x 63"

Prepared For:

Ventana USA 6001 Enterprise Drive Export, PA 15632-8969

Prepared by:

Hermes F. Norero, P.E.

Texas Professional Engineer # 118471 Date: 05/26/217

Contents:

Evaluation Report Pages 1-4Appendix Pages 5-18

Hermes F. Norero, P.E. TX P.E. #118471 Page 1 of 18

Manufacturer: Ventana USA

Product Name: Series 2050 Garden Window

Scope:

This is a Product Evaluation Report issued by Hermes Norero, P.E. (TX # 118471) for **Ventana USA** based on the Texas Department of Insurance.

Hermes F. Norero, P.E. does not have nor will acquire financial interest in the company manufacturing or distributing the product or in any other entity involved in the approval process of the product named herein.

This product has been evaluated for use in locations adhering to the International Building Code (IBC), International Residential Code (IRC), and the Texas Revisions.

See Installation Instructions **VEN002**, signed and sealed by Hermes Norero, P.E. (TX # 118471) for specific use parameters.

Limits of Use:

- 1. This product has been evaluated and is in compliance with the IBC, IRC, and Texas Revisions.
- 2. Product anchors shall be as listed and spaced as shown on details. Anchor embedment into substrate material shall be beyond wall dressing or stucco.
- 3. When used in areas requiring wind borne debris protection this product <u>does not</u> require an impact resistant covering.
- 4. Site conditions that deviate from the details of **VEN002** require further engineering analysis by a licensed engineer or registered architect.
- 5. See Installation Instructions **VEN002** for size and design pressure limitations.

Performance Standards: The product described herein has been tested per:

AAMA/WDMA/CSA 101/I.S.2/A440-08

ASTM E1886-05ASTM E1996-12

Referenced Data: 1. Product Testing performed by **Architectural Testing**

Report #: D4389.01-501-44, Report Date: 10/09/14 Report #: E2513.01-501-44, Report Date: 12/11/14

Equivalence of Test Standards:

The ASTM E886 and E1996 test standards have been evaluated for differences in test methodology, if any, between tested editions of the test standard listed below and the edition referenced in the 2006 International Building Code. Ventana USA has tested their products to the following test standard edition:

- 1) ASTM E1886-05
- 2) ASTM E1996-12

Chapter 35 of the 2006 International Building Code references the following edition of the above mentioned test standard:

- 1) ASTM E1886-04
- 1) ASTM E1996-04

After review of the above mentioned referenced standard and edition, it has been found that no significant technical changes have been made to the test standard that would affect the results or compliance with the code. The referenced standard has been found to be equivalent.

Installation: 1. Approved anchor types and substrates are as follows:

- A. For two by (2X) wood frame substrate (Min. S.G. = 0.42), use **#12 Wood Screw** type wood frame anchors of sufficient length to achieve minimum embedment of 1.50" into wood framing.
- B. For concrete (Min f'c = 3000psi) or masonry (shall comply with ASTM C90) substrate where one by (1X), non-structural, wood bucking is employed, use 1/4" diameter ITW Tapcon type concrete screw anchors of sufficient length to achieve minimum embedment of 1.25" into concrete or masonry.
- C. For concrete (Min f'c = 3000psi) or masonry (shall comply with ASTM C90) substrate where wood bucking is NOT employed, use **1/4" diameter ITW Tapcon** type concrete screw anchors of sufficient length to achieve minimum embedment of 1.25" into concrete or masonry.
- D. For Steel Stud substrate (Min 18 ga., Fy= 33 ksi) use **1/4" TEK Screws** of sufficient length to achieve a minimum of 3 threads penetration beyond steel structure.

Refer to manufacturer Installation Instructions **VEN002** for anchor spacing and more details of the installation requirements.

Design Pressure: +/- 50 PSF

APPENDIX

(INCLUDES THIRTEEN (13) PAGES OF CALCULATIONS)

#12 Wood Screw into Spruce-Pine-Fir w/ 0.5 in. of Gap Space. 2050/2051 PVC Greenhouse Window

Calculations herein are performed in accordance with the National Design Specification for Wood Construction - 2012, Chapter 11.3 and Technical Report 12 - General Dowel Equations for Calculating Lateral Connection Values, published by the American Wood Council

Wood Screw Type =	#12	Wood Screw	1
Wood Screw Length =	3.25	in	
Wood Screw Embedment =	1.50	in	
Wood Screw Thread Length =	2.17	in	
D =	0.216	in	, Dowel Diameter
D _m =	0.171	in	, Dowel Diameter at max. stress in main member
$D_s =$	0.171	in	, Dowel Diameter at max. stress in side member
$F_b =$	80,000	psi	, Dowel bending strength

Wood Screw Lateral Calculations - Solid Main Member - Solid Side Member

Substrate (Main Member): Spruce-Pine-Fir
Frame (Side Member): Spruce-Pine-Fir
Contillator Dictance: 0.5

1.252.210

Cantilever Distance: 0.5 in , Frame hollow space + shim

1.500 in , Main member dowel bearing length 1.250 in , Side member dowel bearing length , Main member dowel bearing strength 3,364 psi , Side member dowel bearing strength $F_{es} =$ 3,364 psi , Main member dowel bearing resistance = F_{em}D_m 575 lbs/in , Side member dowel bearing resistance = F_{es}D_s $q_s =$ 575 lbs/in $M_m =$ in-lbs , Main member dowel moment resistance = $F_h(D_m^3/6)$ 66.67 , Side member dowel moment resistance = $F_b(D_s^3/6)$ $M_c =$ 66.67 in-lbs

 θ = 90 degrees , Maximum angle of load to grain (0° \leq θ \leq 90°) for any member in a connection

Report #: 4847

#12 Wood Screw into Spruce-Pine-Fir w/ 0.5 in. of Gap Space. 2050/2051 PVC Greenhouse Window

		Single Shear	•	Double Sho	ear	
$Mode\ I_{m}$	Z _I =	862.93	lbs	862.93	lbs	, Main Member Bearing
				2.21		, Reduction Term
Mode I _m	Z _i =	390.46	lbs	390.46	lbs	
Mode I _s	Z _I =	719.11	lbs	1438.21 2.21	lbs	, Side Member Bearing , Reduction Term
Mode I _s	Z _I =	325.39	lbs	650.77	lbs	
Mode II	Z _{II} =	260.89 A = 0.0009 B = 1.875 C = -548.32	lbs	2.21		, Side and Main Member Bearing , Reduction Term
Mode II	Z _{II} =	118.05	lbs			
Mode III _m	Z _{III} =	248.04 A = 0.0013 B = 1.250 C = -390.27	lbs			, Main Member Bearing and Dowel Yielding in the Side Member
				2.21		, Reduction Term
Mode III _m	Z _{III} =	112.24	lbs			
Mode III _s	Z _{III} =	208.59 A = 0.0013 B = 1.125 C = -291.39	lbs	417.18	lbs	, Side Member Bearing and Dowel Yielding in the Main Member , Reduction Term
Mode III _s	Z _{III} =	94.39	lbs	188.77	lbs	•
Mode IV	Z _{IV} =	168.26 A = 0.0017 B = 0.500 C = -133.34	lbs	336.51	lbs	, Dowel Yielding in the Side and Main Member , Reduction Term
Mode IV	Z _{IV} =	76.13	lbs	152.27	lbs	
IVIOUC IV	-IV	70.13		132.27	103	

 $C_d = 1.6$, Load Duration $C_p = 1.000$, Penetration Factor

Single Lateral Allowable (Z'_s) = 121.815 lbs Double Lateral Allowable (Z'_d) = 243.629 lbs

<< Capacity @ Head

Report #: 4847

#12 Wood Screw into Spruce-Pine-Fir w/ 0.25 in. of Gap Space. 2050/2051 PVC Greenhouse Window

Calculations herein are performed in accordance with the National Design Specification for Wood Construction - 2012, Chapter 11.3 and Technical Report 12 - General Dowel Equations for Calculating Lateral Connection Values, published by the American Wood Council

Wood Screw Type =	#12	Wood Screv	v
Wood Screw Length =	3.00	in	
Wood Screw Embedment =	1.50	in	
Wood Screw Thread Length =	2.00	in	
D =	0.216	in	, Dowel Diameter
D _m =	0.171	in	, Dowel Diameter at max. stress in main member $% \left(1\right) =\left(1\right) \left(1\right)$
$D_s =$	0.171	in	, Dowel Diameter at max. stress in side member
$F_b =$	80,000	psi	, Dowel bending strength

Wood Screw Lateral Calculations - Solid Main Member - Solid Side Member

Substrate (Main Member): Spruce-Pine-Fir

Frame (Side Member): Spruce-Pine-Fir

Contilour Dictoron 10 25 in Frame hellow space Lightness

2.210

Cantilever Distance: 0.25 in , Frame hollow space + shim

1.500 in , Main member dowel bearing length 1.250 in , Side member dowel bearing length , Main member dowel bearing strength 3,364 psi , Side member dowel bearing strength $F_{es} =$ 3,364 psi , Main member dowel bearing resistance = F_{em}D_m 575 lbs/in , Side member dowel bearing resistance = F_{es}D_s $q_s =$ 575 lbs/in $M_m =$ in-lbs , Main member dowel moment resistance = $F_h(D_m^3/6)$ 66.67 , Side member dowel moment resistance = $F_b(D_s^3/6)$ $M_c =$ 66.67 in-lbs

 θ = 90 degrees , Maximum angle of load to grain (0° ≤ θ ≤ 90°) for any member in a connection K_{θ} = 1.25

Report #: 4847

#12 Wood Screw into Spruce-Pine-Fir w/ 0.25 in. of Gap Space. 2050/2051 PVC Greenhouse Window

		Single Shear		Double She	ear	
$Mode\ I_{m}$	$Z_{l} = {}$	862.93	lbs	862.93	lbs	, Main Member Bearing
				2.21		, Reduction Term
Mode I _m	Z _i =	390.46	lbs	390.46	lbs	
Mode I _s	Z _I =	719.11	lbs	1438.21 2.21	lbs	, Side Member Bearing , Reduction Term
Mode I _s	Z _i =	325.39	lbs	650.77	lbs	
Mode II	Z _{II} =	291.87 A = 0.0009 B = 1.625 C = -548.32	lbs	2.21		, Side and Main Member Bearing , Reduction Term
	-			2.21		, neddenon renn
Mode II	Z _{II} =	132.07	lbs			
Mode III _m	Z _{III} =	284.64 A = 0.0013 B = 1.000 C = -390.27	lbs			, Main Member Bearing and Dowel Yielding in the Side Member
				2.21		, Reduction Term
Mode III _m	Z _{III} =	128.80	lbs			
Mode III _s	Z _{III} =	244.18 A = 0.0013 B = 0.875 C = -291.39	lbs	488.36	lbs	, Side Member Bearing and Dowel Yielding in the Main Member
				2.21		, Reduction Term
Mode III _s	Z _{III} =	110.49	lbs	220.98	lbs	
Mode IV	Z _{IV} =	214.23 A = 0.0017 B = 0.250 C = -133.34	lbs	428.47	lbs	, Dowel Yielding in the Side and Main Member
				2.21		, Reduction Term
Mode IV	Z _{IV} =	96.94	lbs	193.88	lbs	

 $C_d = 1.6$, Load Duration $C_p = 1.000$, Penetration Factor

Single Lateral Allowable $(Z'_s) = 155.102$ lbs Double Lateral Allowable $(Z'_d) = 310.204$ lbs

<< Capacity @ Jambs & Sill

Report #: 4847

Date: 6/1/2017

Product Evaluation Report

Ventana USA

2050/2051 PVC Greenhouse Window

Shear Design Value								
Concrete	Ancho	r Calcula	tions		Masonry Anchor Calculations			
Fastener type: 1	L/4" ITW	/ Tapcon			Fastener type: 1/4" ITW Tapcon			
Reference: I	Manufac	ture Publis	hed Data	а	Reference: Manufacture Published Data			
Substrate: 3	3000 PSI	Concrete o	r Greate	er	Substrate: Hollow Block CMU (Per ASTM C-90)			
Minimum embedment:	1.25	in			Minimum embedment: 1.25 in			
Minimum Spacing:	3.00) in			Minimum Spacing: 3.00 in			
Minimum edge distance:	2.50) in			Minimum edge distance: 2.50 in			
Allowable Design Value:	Z'=	177 lbs	/	anchor	Allowable Design Value: Z'= 156 lbs / anchor			
Fastener type: 1	L/4" ITW	/ Tapcon						
Shank Diameter:	D =	0.190	in		Factor of Safety: Ω = 2.00			
Cantilever distance:		0.50	in		Bending Yield strength: F _y = 100.00 ksi			
Moment arm:		0.25	in		Ultimate strength: F _u = 125.00 ksi			
Allowable bending stress:	$F_b =$	46.88	ksi		Allowable shear stress: Fv = 28.13 ksi			
Actual bending stress:	$f_b =$	40.47	ksi		Actual shear stress: f _v = 3.84 ksi			
Combined bending plus shear:	(fb/Fl	b)+(fv/Fv)	= 1.0	≤ 1.0	Elastic Modulus: $S = 0.0007$ in ³			
Maximum design value in canti	lever:	109 lb	s /	anchor	Area: $A = 0.02835287 \text{ in}^2$			

398 East Dania Beach Blvd., Suite 338 Dania Beach, FL 33004

PH: 954.399.8478 FX: 954.744.4738

Date: 6/1/2017

Product Evaluation Report

Ventana USA

2050/2051 PVC Greenhouse Window

Manufacture Published Data

PERFORMANCE TABLES

Tapcon°

Anchors Ultimate Tension and Shear Values (Lbs/kN) in Concrete

ANCHOR	MIN. DEPTH OF	f'c = 2000 P	'SI (13.8 MPa)	f'c = 3000 P	SI (20.7 MPa)	f'c = 4000 F	'SI (27.6 MPa)	f'c = 5000 P	SI (34.5 MPa)
DIA. In. (mm)	In. (mm)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)						
3/16 (4.8)	1 (25.4)	600 (2.7)	720 (3.2)	625 (2.8)	720 (3.2)	650 (2.9)	720 (3.2)	800 (3.6)	860 (3.8)
	1-1/4 (31.8)	845 (3.7)	720 (3.2)	858 (3.8)	720 (3.2)	870 (3.9)	720 (3.2)	1,010 (4.5)	860 (3.8)
	1-1/2 (38.1)	1,090 (4.8)	860 (3.8)	1,090 (4.8)	860 (3.8)	1,090 (4.8)	860 (3.8)	1,220 (5.4)	860 (3.8)
	1-3/4 (44.5)	1,450 (6.5)	870 (3.9)	1,455 (6.5)	870 (3.9)	1,460 (6.5)	990 (4.4)	1,730 (7.7)	990 (4.4)
1/4 (6.4)	1 (25.4)	750 (3.3)	900 (4.0)	775 (3.4)	900 (4.0)	800 (3.6)	1,360 (6.1)	950 (4.2)	1,440 (6.4)
	1-1/4 (31.8)	1,050 (4.7)	900 (4.0)	1,160 (5.2)	900 (4.0)	1,270 (5.6)	1,360 (6.1)	1,515 (6.7)	1,440 (6.4)
	1-1/2 (38.1)	1,380 (6.1)	1,200 (5.3)	1,600 (7.2)	1,200 (5.3)	1,820 (8.1)	1,380 (6.1)	2,170 (9.7)	1,670 (7.4)
	1-3/4 (44.5)	2,020 (9.0)	1,670 (7.4)	2,200 (9.8)	1,670 (7.4)	2,380 (10.6)	1,670 (7.4)	2,770 (12.3)	1,670 (7.4)

Safe working loads for single installation under static loading should not exceed 25% of the ultimate load capacity.

Tapcon[®] Anchors

Ultimate Tension and Shear Values (Lbs/kN) in Hollow Block

ANCHOR ANCHOR		LIGHTWEI	GHT BLOCK	MEDIUM WEIGHT BLOCK			
DIA. In. (mm)	EMBEDMENT In. (mm)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)		
3/16 (4.8)	1 (25.4)	220 (1.0)	400 (1.8)	340 (1.5)	730 (3.2)		
1/4 (6.4)	1 (25.4)	250 (1.1)	620 (2.8)	500 (2.2)	1,000 (4.4)		

Safe working loads for single installation under static loading should not exceed 25% of the ultimate load capacity.

NOTE: 3/16" Tapcon requires 5/32" bit, 1/4" Tapcon requires 3/16" bit.

Tapcon[®] Anchors Allowable Edge and Spacing Distances

_								
PARAMETER	ANCHOR	ı	NORMAL WEIGHT CONCRE	TE	CONCRETE MASONRY UNITS (CMU)			
	DIA. In. (mm)	FULL CAPACITY (Critical Distance Inches)	REDUCED CAPACITY (Minimal Distance Inches)	LOAD REDUCTION FACTOR	FULL CAPACITY (Critical Distance Inches)	REDUCED CAPACITY (Minimal Distance Inches)	LOAD REDUCTION FACTOR	
Spacing Between	3/16	3	1-1/2	0.73	3	1-1/2	1.00	
Anchors - Tension	1/4	4	2	0.66	4	2	0.84	
Spacing Between	3/16	3	1-1/2	0.83	3	1-1/2	1.00	
Anchors - Shear	1/4	4	2	0.82	4	2	0.81	
Edge Distance -	3/16	1-7/8	1	0.83	4	2	0.91	
Tension	1/4	2-1/2	1-1/4	0.82	4	2	0.88	
Edge Distance	3/16	2-1/4	1-1/8	0.70	4	2	0.93	
-Shear	1/4	3	1-1/2	0.59	4	2	0.80	

For SI: 1 inch = 25.4 mm

398 East Dania Beach Blvd., Suite 338 Dania Beach, FL 33004

PH: 954.399.8478 FX: 954.744.4738

Date: 6/1/2017

Product Evaluation Report

Ventana USA

2050/2051 PVC Greenhouse Window

Shear Design Value								
Concrete Anchor Calcula	tions	Masonry Anchor Calculations						
Fastener type: 1/4" ITW Tapcon		Fastener type: 1/4" ITW Tapcon						
Reference: Manufacture Publis	hed Data	Reference: Manufacture Published Data						
Substrate: 3000 PSI Concrete of	or Greater	Substrate: Hollow Block CMU (Per ASTM C-90)						
Minimum embedment: 1.25 in		Minimum embedment: 1.25 in						
Minimum Spacing: 3.00 in		Minimum Spacing: 3.00 in						
Minimum edge distance: 2.50 in		Minimum edge distance: 2.50 in						
Allowable Design Value: Z'= 177 lbs	/ anchor	Allowable Design Value: Z'= 156 lbs / anchor						
Fastener type: 1/4" ITW Tapcon								
Shank Diameter: D = 0.190	in	Factor of Safety: Ω = 2.00						
Cantilever distance: 0.25	in	Bending Yield strength: $F_y = 100.00$ ksi						
Moment arm: 0.13	in	Ultimate strength: $F_u = 125.00$ ksi						
Allowable bending stress: F _b = 46.88	ksi	Allowable shear stress: Fv = 28.13 ksi						
Actual bending stress: $f_b = 35.62$	ksi	Actual shear stress: $f_v = 6.76$ ksi						
Combined bending plus shear: (fb/Fb)+(fv/Fv)	= 1.0 ≤ 1.0	Elastic Modulus: $S = 0.0007$ in ³						
Maximum design value in cantilever: 192 lb	os / anchor	Area: $A = 0.02835287 \text{ in}^2$						

398 East Dania Beach Blvd., Suite 338 Dania Beach, FL 33004

PH: 954.399.8478 FX: 954.744.4738

Date: 6/1/2017

Product Evaluation Report

Ventana USA

2050/2051 PVC Greenhouse Window

Manufacture Published Data

PERFORMANCE TABLES

Tapcon®

Ultimate Tension and Shear Values (Lbs/kN) in Concrete

ANCHOR	MIN. DEPTH OF	f'c = 2000 P	f'c = 2000 PSI (13.8 MPa)		SI (20.7 MPa)	f'c = 4000 P	f'c = 4000 PSI (27.6 MPa)		f'c = 5000 PSI (34.5 MPa)	
DIA. In. (mm)	EMBEDMENT In. (mm)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	
3/16 (4.8)	1 (25.4)	600 (2.7)	720 (3.2)	625 (2.8)	720 (3.2)	650 (2.9)	720 (3.2)	800 (3.6)	860 (3.8)	
	1-1/4 (31.8)	845 (3.7)	720 (3.2)	858 (3.8)	720 (3.2)	870 (3.9)	720 (3.2)	1,010 (4.5)	860 (3.8)	
	1-1/2 (38.1)	1,090 (4.8)	860 (3.8)	1,090 (4.8)	860 (3.8)	1,090 (4.8)	860 (3.8)	1,220 (5.4)	860 (3.8)	
	1-3/4 (44.5)	1,450 (6.5)	870 (3.9)	1,455 (6.5)	870 (3.9)	1,460 (6.5)	990 (4.4)	1,730 (7.7)	990 (4.4)	
1/4 (6.4)	1 (25.4)	750 (3.3)	900 (4.0)	775 (3.4)	900 (4.0)	800 (3.6)	1,360 (6.1)	950 (4.2)	1,440 (6.4)	
	1-1/4 (31.8)	1,050 (4.7)	900 (4.0)	1,160 (5.2)	900 (4.0)	1,270 (5.6)	1,360 (6.1)	1,515 (6.7)	1,440 (6.4)	
	1-1/2 (38.1)	1,380 (6.1)	1,200 (5.3)	1,600 (7.2)	1,200 (5.3)	1,820 (8.1)	1,380 (6.1)	2,170 (9.7)	1,670 (7.4)	
	1-3/4 (44.5)	2,020 (9.0)	1,670 (7.4)	2,200 (9.8)	1,670 (7.4)	2,380 (10.6)	1,670 (7.4)	2,770 (12.3)	1,670 (7.4)	

Safe working loads for single installation under static loading should not exceed 25% of the ultimate load capacity.

Tapcon[®] Anchors

Ultimate Tension and Shear Values (Lbs/kN) in Hollow Block

ANCHOR ANCHOR		LIGHTWEI	GHT BLOCK	MEDIUM WEIGHT BLOCK			
DIA. In. (mm)	EMBEDMENT In. (mm)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)	TENSION Lbs. (kN)	SHEAR Lbs. (kN)		
3/16 (4.8)	1 (25.4)	220 (1.0)	400 (1.8)	340 (1.5)	730 (3.2)		
1/4 (6.4)	1 (25.4)	250 (1.1)	620 (2.8)	500 (2.2)	1,000 (4.4)		

Safe working loads for single installation under static loading should not exceed 25% of the ultimate load capacity.

NOTE: 3/16" Tapcon requires 5/32" bit, 1/4" Tapcon requires 3/16" bit.

Tapcon Anchors Allowable Edge and Spacing Distances

PARAMETER	ANCHOR	1	NORMAL WEIGHT CONCRE	TE	CONCRETE MASONRY UNITS (CMU)			
	DIA. In. (mm)	FULL CAPACITY (Critical Distance Inches)	REDUCED CAPACITY (Minimal Distance Inches)	LOAD REDUCTION FACTOR	FULL CAPACITY (Critical Distance Inches)	REDUCED CAPACITY (Minimal Distance Inches)	LOAD REDUCTION FACTOR	
Spacing Between	3/16	3	1-1/2	0.73	3	1-1/2	1.00	
Anchors - Tension	1/4	4	2	0.66	4	2	0.84	
Spacing Between	3/16	3	1-1/2	0.83	3	1-1/2	1.00	
Anchors - Shear	1/4	4	2	0.82	4	2	0.81	
Edge Distance -	3/16	1-7/8	1	0.83	4	2	0.91	
Tension	1/4	2-1/2	1-1/4	0.82	4	2	0.88	
Edge Distance	3/16	2-1/4	1-1/8	0.70	4	2	0.93	
-Shear	1/4	3	1-1/2	0.59	4	2	0.80	

For SI: 1 inch = 25.4 mm

TBPE Firm #13734 398 East Dania Beach Blvd., Suite 338 Dania Beach, FL 33004 PH: 954.399.8478 FX: 954.744.4738

Date: 6/1/2017

Report #: 4847

Product Evaluation Report Steel Stud Anchor Calculations 1/4" Tek Screw Fastener type: Substrate: 18 Steel Gauge Referecne: AAMA TIR A9-14 Minimum embedment: 3 pitches of thread Z'= 441 lbs / anchor Allowable Design Value: Fastener type: 1/4" Tek Screw with min. engagement of 3 pitches of thread 0.196 Shank Diameter: Factor of Safety: Ω= 2.00 Cantilever distance: 0.50 Bending Yield strength: 92.00 $F_v =$ ksi Moment arm: 0.25 Ultimate strength: 120.00 ksi Allowable bending stress: 45 ksi Allowable shear stress: 27.00 ksi Actual bending stress: 39 Actual shear stress: 3.80 ksi ksi in^3 Combined bending plus shear: (fb/Fb)+(fv/Fv) =1.0 1.0 Elastic Modulus: 0.0007 ≤ $A = 0.03017186 \text{ in}^2$ Maximum design value in cantilever: 114 lbs anchor Area: Minimum anchor capacity: 114 lbs anchor Minimum anchor capacity per Substrate: **Steel Stud Anchor** anchor << Capacity @ Head

TBPE Firm #13734 398 East Dania Beach Blvd., Suite 338 Dania Beach, FL 33004 PH: 954.399.8478 FX: 954.744.4738

Date: 6/1/2017

Report #: 4847

Product Evaluation Report Steel Stud Anchor Calculations 1/4" Tek Screw Fastener type: Substrate: 18 Steel Gauge Referecne: AAMA TIR A9-14 Minimum embedment: 3 pitches of thread Z'= 441 lbs / anchor Allowable Design Value: Fastener type: 1/4" Tek Screw with min. engagement of 3 pitches of thread 0.196 Shank Diameter: Factor of Safety: Ω= 2.00 Cantilever distance: 0.25 Bending Yield strength: 92.00 $F_v =$ ksi Moment arm: 0.13 Ultimate strength: 120.00 ksi Allowable bending stress: 45 ksi Allowable shear stress: 27.00 ksi Actual bending stress: 34 Actual shear stress: 6.70 ksi ksi in^3 Combined bending plus shear: (fb/Fb)+(fv/Fv) =1.0 1.0 Elastic Modulus: 0.0007 ≤ $A = 0.03017186 \text{ in}^2$ Maximum design value in cantilever: 200 lbs anchor Area: Minimum anchor capacity: 200 lbs anchor Minimum anchor capacity per Substrate: **Steel Stud Anchor** anchor << Capacity @ Jambs & Sill

A Perfect Solution in Every Drop TBPE Firm #13734

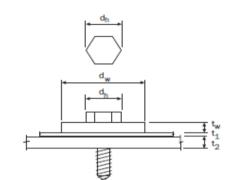
398 East Dania Beach Blvd., Suite 338 Dania Beach, FL 33004

PH: 954.399.8478 FX: 954.744.4738 Date: 6/1/2017

E4.3.1 Shear Strength Limited by Tilting and Bearing:

Reference: AISI Cold Formed Steel Specifications, E4.3.1

The nominal shear strength [resistance] per screw, Pns, shall be determined in accordance Figure 1: Typical Connection Detail with this section.


For $t_2/\,t_1 \leq 1.0,\,P_{ns}$ shall be taken as the smallest of

 $\begin{array}{ll} P_{ns} = \ 4.2 \ (t_2^3 d)^{1/2} F_{u2} & (\textit{Eq. E4.3.1-1}) \\ P_{ns} = \ 2.7 \ t_1 \ d \ F_{u1} & (\textit{Eq. E4.3.1-2}) \\ P_{ns} = \ 2.7 \ t_2 \ d \ F_{u2} & (\textit{Eq. E4.3.1-3}) \end{array}$

For $t_2/\,t_1 \geq 2.5,\, P_{ns}$ shall be taken as the smaller of

 $P_{ns} = 2.7 t_1 d F_{u1}$ (Eq. E4.3.1-4) $P_{ns} = 2.7 t_2 d F_{u2}$ (Eq. E4.3.1-5)

For $1.0 < t_2/t_1 < 2.5$, P_{ns} shall be calculated by linear interpolation between the above two cases

Report #: 4847

Where,

Nominal screw diameter,	d =	0.196	in.
Thickness of member in contact with screw head,	t1 =	1.25	in.
Thicness of member non in contact with screw head,	t2 =	0.0478	in.
Ratio of thickness,	t2/t1 =	0.03824	
Tensile strength of mem. in contact with screw head,	Fu1 =	750	psi
Tensile strength of mem. not in contact with screw head,	Fu2 =	33000	psi

Eq. E4.3.1-1,	Pns =	641.258 lbs
Eq. E4.3.1-2,	Pns =	496.125 lbs
Eq. E4.3.1-3,	Pns =	834.76 lbs
Eq. E4.3.1-4,	Pns =	496.125 lbs
Ea. E4.3.1-5.	Pns =	834.76 lbs

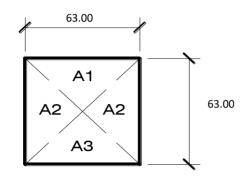
For $t2/t1 \le 1.0$,	Pns =	496.125 lbs	Use This Value
For $t2/t1 \ge 2.5$,	Pns =	496.125 lbs	Not Applicable
For 1.0 < t2/t1 < 2.5,	Pns =	496.125 lbs	Not Applicable

Per ASD,	$Pns/\Omega =$	165.375 lbs, Ω =	<u>3</u>
Per LRFD,	<u>ΦPns =</u>	248.063 lbs, Φ =	<u>0.5</u>

BUILDING DROPS A Perfect Solution in Every Drop

TBPE Firm #13734
398 East Dania Beach Blvd., Suite 338

Dania Beach, FL 33004 PH: 954.399.8478 FX: 954.744.4738


Product Evaluation Report

Ventana USA

2050/2051 PVC Greenhouse Window

Anchor Capacity Calculations: Through Frame Installation

(AS TESTED)

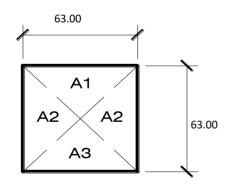
Zone					Anchor		
	Area (ft ²) Load	Load (lbs)	From Corner Distance (in)		Cap. (lbs)	Qty	
A_1	6.89	344.5	6.0	25.5	114.8	3	
A ₂	6.89	344.5	6.0	25.5	114.8	3	
A ₃	6.89	344.5	6.0	25.5	114.8	3	

50.0 psf

Report #: 4847

Date: 6/1/2017

Window Total Area:


27.56 ft²

Minimum anchor capacity per Substrate:

Anchor Capacity Calculations: Through Frame Installation

Wood	155	lbs	/	anchor	<< Limiting @ Jambs & Sill
Metal stud	165	lbs	/	anchor	
Masonry	156	lbs	/	anchor	
Wood Head	122	lbs	/	anchor	
Metal Head	114	lbs	/	anchor	
Masonry Head	109	lbs	/	anchor	<< Limiting @ Head

Design pressure:

Substrate of installation: Wood

Zone			From Max. O.C.					
	Area (ft ²) Load (Load (lbs)	Corner Distance (in)	Spacing (in)	Cap. (lbs)	Qty	Load (lbs)	Result
A_1	6.89	344.5	6.0	25.5	155.1	3	114.8	ОК
A_2	6.89	344.5	6.0	25.5	155.1	3	114.8	ОК
A_3	6.89	344.5	6.0	25.5	155.1	3	114.8	ОК
J	6.89	344.5	6.0	25.5	155.1	3	114.8	OK
Н	6.89	344.5	6.0	12.8	109.0	5	68.9	OK
S	6.89	344.5	6.0	25.5	155.1	3	114.8	OK

Design pressure: 50.0 psf

*H=A1

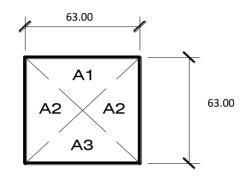
*J =A2

*S=A3

Window Total Area: 27.56 ft²

Report #: 4847 Date: 6/1/2017

Product Evaluation Report


Ventana USA

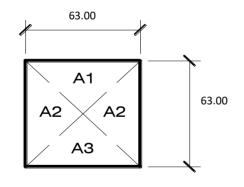
2050/2051 PVC Greenhouse Window

Anchor Capacity Calculations: Through Frame Installation

(AS TESTED)

Combined Wind Load and Dead Load

					Anchor		
Zone	Area (ft²)	Load (lbs)	From Corner Distance (in)	Max. O.C. (in)	Cap. (lbs)	Qty	
A_1	6.89	544.5	6.0	12.0	90.8	6	
A ₂	6.89	633.9	6.0	25.5	211.3	3	
A ₃	6.89	544.5	6.0	25.5	181.5	3	


Window Total Area:

27.56 ft²

Minimum anchor capacity per Substrate:

Anchor Capacity Calculations: Through Frame Installation

5 lbs	/	anchor	
6 lbs	/	anchor	
2 lbs	/	anchor	
.4 lbs	/	anchor	
9 lbs	/	anchor	<< Limiting @ Head
	6 lbs 2 lbs 4 lbs	6 lbs / 2 lbs / 4 lbs /	6 lbs / anchor 2 lbs / anchor 4 lbs / anchor

Substrate	of	installation:	Wood	
				-

			From	Max. O.C.		Anchor		
Zone	Area (ft²)	Load (lbs)	Corner Distance (in)	Spacing (in)	Cap. (lbs)	Qty	Load (lbs)	Result
A_1	6.89	544.5	6.0	12.8	155.1	5	108.9	ОК
A_2	6.89	633.9	6.0	10.2	155.1	6	105.6	ОК
A_3	6.89	544.5	6.0	12.8	155.1	5	108.9	ОК
J	6.89	633.9	6.0	10.20	155.1	6	105.6	OK
Н	6.89	544.5	6.0	12.75	109.0	5	108.9	OK
S	6.89	544.5	6.0	12.75	155.1	5	108.9	OK

*H=A1

*J =A2

*S=A3